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Abstract. The car-following model of traffic flow is extended to take into account the relative velocity.
The stability condition of this model is obtained by using linear stability theory. It is shown that the
stability of uniform traffic flow is improved by considering the relative velocity. From nonlinear analysis,
it is shown that three different density waves, that is, the triangular shock wave, soliton wave and kink-
antikink wave, appear in the stable, metastable and unstable regions of traffic flow respectively. The three
different density waves are described by the nonlinear wave equations: the Burgers equation, Korteweg-de
Vries (KdV) equation and modified Korteweg-de Vries (mKdV) equation, respectively.

PACS. 89.40.-a Transportation – 64.60.Cn Order-disorder transformations; statistical mechanics of model
systems – 02.60.Cb Numerical simulation; solution of equations – 05.70.Fh Phase transitions: general
studies

1 Introduction

Traffic flow is an interesting phenomenon of modern world.
Although we all experience it daily, traffic problems are far
from being well understood. As typical signature of the
complex behavior of traffic flow, traffic jams have been
studied by various traffic models: car-following models,
cellular automaton (CA) models, gas kinetic models and
hydrodynamic models.

In recent years, many studies reveal traffic phenomena
such as the phase transitions and the nonlinear waves.
Kerner and Rehborn [1] observe the dynamical jamming
transitions between the freely moving traffic at low density
and jammed traffic at high density. The jamming transi-
tions have the properties similar to the conventional phase
transitions: the freely moving traffic and jammed traffic
correspond to the gas and liquid phases, respectively.

In modern traffic theory, it is well-known that traffic
jams occur in the high density region and propagate as
various density waves. Some of these density waves show
typical nonlinear waves such as the triangular shock wave,
the soliton wave and the kink-antikink wave. The density
waves are described by the nonlinear wave equations: the
Burgers equation, the Korteweg-de Vries (KdV) equation
and the modified Korteweg-de Vries (mKdV) equation, re-
spectively. Recently, many researchers investigate the non-
linear wave equations for traffic flow by using the nonlin-
ear analysis method. Kurtze and Hong [2] derive the KdV
equation from the hydrodynamic model and show that
the traffic soliton appears near the neutral stability line.
Komatsu and Sasa [3] obtain the mKdV equation from the
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optimal velocity (OV) model proposed by Bando et al. [4]
to describe the density waves in congestion. Muramatsu
and Nagatani [5] derive the KdV equation from the OV
model and describe traffic jams as soliton density waves.

For public demand, it is necessary to raise the trans-
portation efficiency and prevent traffic jams. Many ap-
proaches to extending the traffic model toward suppress-
ing the appearance of traffic congestion efficiently have
been pursued. Jiang et al. [6] propose a full velocity dif-
ference model by taking into account the velocity differ-
ence. Xue [7] extends the OV model to take into account
the relative velocity. Ge et al. [8] present an extended
car-following model with consideration the headway of
arbitrary number of vehicles ahead. Li et al. [9] present
a forward looking relative velocity model by introducing
relative velocities of arbitrary number of vehicles ahead
into the full velocity difference model.

In this paper, an extended car-following model is pro-
posed by considering the relative velocity. We consider the
effect of relative velocity upon the phase transitions and
the nonlinear waves by using the linear stability theory
and nonlinear analysis. The linear stability analysis shows
that the traffic flow of the extended model is more stable
by taking into account the relative velocity. The Burgers
equation, KdV equation and mKdV equation are derived
to describe the density waves in the stable, metastable and
unstable region of traffic flow by using nonlinear analy-
sis, respectively. The triangular shock wave, soliton wave
and kink-antikink wave appear as the density waves in the
three regions, respectively.

The organization of this paper is as follows. In Sec-
tion 2 we give the extended car-following model by con-
sidering the relative velocity. In Section 3 the stability
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of the extended model is analyzed by the linear stability
theory. The neutral stability lines and the critical points
varying with the weighted coefficient of the relative ve-
locity are shown. In Section 4 the Burgers equation, KdV
equation and mKdV equation are derived to describe the
density waves in the stable, metastable and unstable re-
gion of traffic flow by using nonlinear analysis. Section 5
give a summary.

2 Model

In general, the dynamic equation of the car-following
model on the single-lane highway can be written as [10]

ẍn = fsti(vn, ∆xn, ∆vn), (1)

where the function fsti represents the response to the stim-
uli received by the nth vehicle. Equation (1) defines the
acceleration or deceleration of the nth vehicle, which is
determined by the stimuli received from the surround-
ing traffic. The stimuli are composed of the velocity vn

of the nth vehicle, the headway ∆xn = xn+1 − xn be-
tween two successive vehicles and the relative velocity
∆vn = vn+1 − vn.

Newell [11] proposes a car-following model which is
given by a first-order differential equation by introducing a
delay time which plays an important role in the occurrence
of traffic congestion. The motion of nth car is given as
follows

dxn(t + τ)
dt

= V (∆xn(t)), (2)

where xn(t) is the position of the nth vehicle at time t,
∆xn(t) is the headway, V (∆xn(t)) is the optimal velocity
function and τ is the delay time.

Combining with the idea of equation (1), the optimal
velocity function of equation (2) may be determined not
only by the headway but also by the relative velocity.
Then, an extended car-following model by considering the
relative velocity is constructed as follows

dxn(t + τ)
dt

= V (∆xn(t), ∆vn(t)), (3)

where V (∆xn(t), ∆vn(t)) is the optimal velocity function
formulated as a function of the headway and the relative
velocity. The idea of the extended model (3) is that the
driver adjusts the car velocity dxn(t + τ)/dt according to
the stimuli received by the nth vehicle, that is, the head-
way ∆xn(t) and the relative velocity ∆vn(t). The delay
time τ is the time lag that it takes the car velocity to
reach the optimal velocity V (∆xn(t), ∆vn(t)) when the
traffic flow is varying.

Let the optimal velocity function be a linear combina-
tion between the headway and the relative velocity, i.e.,
V (∆xn(t), ∆vn(t)) = V (∆xn(t)) + λ∆vn(t), where the
weighted coefficient of the relative velocity λ is a constant
independent of time, velocity and position (0 ≤ λ ≤ 1).
Therefore, the extended model (3) can be rewritten as

dxn(t + τ)
dt

= V (∆xn(t)) + λ∆vn(t). (4)

If λ = 0, the extended model is the Newell model ex-
pressed by equation (2).

The optimal velocity function V (∆xn(t)) is selected
similar to that used by Bando et al. [4]

V (∆xn(t)) =
vmax

2
[tanh(∆xn(t) − hc) + tanh(hc)], (5)

where hc is the safety distance and vmax is the maximal ve-
locity. The optimal velocity function is a monotonically in-
creasing function of the headway and has an upper bound
(i.e. the maximal velocity). When the headway is less than
the safety distance, the vehicle reduces its velocity to pre-
vent from crashing into the preceding vehicle. On the other
hand, if the headway is larger than the safety distance, the
vehicle increases its velocity to the maximal velocity. The
optimal velocity function given by equation (5) has the
turning point (inflection point) at ∆xn = hc, that is,

V ′′(hc) =
d2V (∆xn)

d∆x2
n

∣
∣
∣
∣
∆xn=hc

= 0.

It is important that the optimal velocity function has the
turning point. Otherwise, we cannot derive the mKdV
equation which has the kink-antikink solution to describe
the traffic jams.

The phase diagram in the parameter space (∆x, 1/τ)
of equation (4) is shown in Figure 1. The solid line repre-
sents the coexisting curve which can be obtained from the
solution of the mKdV equation (see Sect. 4.3). The neu-
tral stability line (that is, the spinodal line) is shown by
the dotted line. There exists the critical point (hc, 1/τc)
which is the apex of the neutral stability line similar to
the conventional gas-liquid phase transition. In this figure,
the traffic flow is divided into three regions: the first is the
stable region above the coexisting curve, the second is the
metastable region between the neutral stability line and
the coexisting curve and the third is the unstable region
below the neutral stability line. The traffic flow is stable
above the neutral stability line and the traffic jams will
not appear. While below the neutral stability line, traffic
flow is unstable and the density waves emerge.

3 Linear stability analysis

We apply the linear stability theory to analyze the ex-
tended model expressed by equation (4). The stability of
uniform traffic flow is considered, which can be defined by
such a state that all cars move with the identical headway
h and the optimal velocity V (h). Then the solution x

(0)
n (t)

representing the uniform steady state of equation (4) can
be written as

x(0)
n (t) = hn + V (h)t. (6)

Let yn(t) be a small deviation from the uniform steady
state x

(0)
n (t): xn(t) = x

(0)
n (t) + yn(t). Substituting it into

equation (4) and linearizing the resulting equation, we can
obtain

dyn(t + τ)
dt

= V ′(h)∆yn(t) + λ
d∆yn(t)

dt
, (7)
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Fig. 1. The phase diagram of equation (4).

where V ′(h) is the derivative of the optimal velocity func-
tion V (∆xn(t)) at ∆xn(t) = h and ∆yn(t) = yn+1(t) −
yn(t). By expanding yn(t) ∝ exp(ikn + zt), the following
equation of z is obtained

zezτ − (V ′(h) + λz)(eik − 1) = 0. (8)

By expanding z = z1(ik) + z2(ik)2 + ... and inserting it
into equation (8), the first- and second-order terms of ik
are obtained

z1 = V ′(h), z2 =
V ′(h)

2
− τz2

1 + λz1. (9)

If z2 is a negative value, the uniform steady state becomes
unstable for long wavelength modes, while the uniform
flow is stable when z2 is a positive value. The neutral
stability condition for the uniform steady state is given by

τs =
1 + 2λ

2V ′(h)
. (10)

For small disturbances of long wavelength, the uniform
traffic flow is stable if

τ <
1 + 2λ

2V ′(h)
. (11)

Comparing the stability condition with that of the Newell
model expressed by equation (2) [12], we conclude that
equation (4) is stabilized in the region

1
2τ

< V ′(h) <
1 + 2λ

2τ
, (12)

by the effect of the relative velocity, which means that
by introducing the relative velocity into the car-following
model, traffic flow becomes more stable similar to that by
taking into account the headway of car ahead [8].

Figure 2 shows the neutral stability lines varying with
the weighted coefficient of relative velocity in the parame-
ter space (∆x, 1/τ) for equation (4). The solid lines repre-
sent the neutral stability lines for various values of λ. The

Fig. 2. Neutral stability lines vary with λ.

apex of each curve indicates the critical point (hc, 1/τc).
From Figure 2, it can be seen that the critical points and
the neutral stability lines are lowered with taking into ac-
count larger value of λ. So the extended model with tak-
ing into account the relative velocity expressed by equa-
tion (4) is more stable than the Newell model. Moreover,
with increasing λ, that is, with attaching importance to
the effect of the relative velocity, the stability of the uni-
form traffic flow is improved. The traffic jams are thus
suppressed efficiently. When λ = 0, the results given in
this section agree with those given in references [12,13].

4 Nonlinear analysis and density waves

Car density could fluctuate for various reasons to form
density wave in traffic flow, which can lead to the traffic
jams. Different nonlinear wave equations have been de-
rived to describe the corresponding density waves from
many models of traffic flow. Here we will investigate the
nonlinear analysis to consider the slowly varying behav-
iors in the stable, metastable and unstable region of the
extended model expressed by equation (4). For later con-
venience, equation (4) can be rewritten as

d∆xn(t + τ)
dt

= V (∆xn+1(t)) − V (∆xn(t))

+ λ

[
d∆xn+1(t)

dt
− d∆xn(t)

dt

]

. (13)

We now consider long-wavelength modes on coarse-
grained scales. The simplest way to describe the long-
wavelength modes is the long-wave expansion. We apply
the reductive perturbation method to equation (13). We
introduce slow scales for space variable n and time vari-
able t and define slow variables X and T for 0 < ε � 1

X = εp(n + bt), T = εqt, (14)

where b is a constant to be determined. We set the head-
way as

∆xn(t) = h + εmR(X, T ). (15)
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In the expressions of equations (14) and (15), p, q and
m are parameters which will be determined for following
discussion in the stable, metastable and unstable region.

Substituting equations (14) and (15) into equation (13)
and making the Taylor expansions about ε, one obtains
the following nonlinear partial differential equation

εp+mb∂XR + εq+m∂T R + εp+q+m2bτ∂X∂T R

+ ε2p+mb2τ∂2
XR + ε3p+m b3τ2

2
∂3

XR+ε4p+m b4τ3

6
∂4

XR=

εp+mV ′∂XR+ε2p+m V ′

2
∂2

XR+ε3p+m V ′

3!
∂3

XR

+ ε4p+m V ′

4!
∂4

XR + εp+2m V ′′

2
∂XR2 + ε2p+2m V ′′

4
∂2

XR2

+ εp+3m V ′′′

3!
∂XR3+ε2p+3m V ′′′

12
∂2

XR3+λ

[

ε2p+mb∂2
XR

+εp+q+m∂X∂T R + ε3p+m b

2
∂3

XR + ε4p+m b

6
∂4

XR

]

, (16)

where V ′ = dV (∆x)
d∆x |∆x=h, V ′′ = d2V (∆x)

d∆x2 |∆x=h and V ′′′ =
d3V (∆x)

d∆x3 |∆x=h. For simplicity, V ′, V ′′ and V ′′′ correspond
to V ′(h), V ′′(h) and V ′′′(h) in the above equation and
hereafter.

4.1 Burgers equation in the stable flow region

In the stable traffic flow, the long-wave mode is consid-
ered by taking p = 1, q = 2 and m = 1. Substituting the
values of these parameters into equation (16), we obtain
the following nonlinear partial differential equation

ε2(b − V ′)∂XR + ε3[∂T R − V ′′R∂XR

+ (b2τ − V ′

2
− λb)∂2

XR] = 0. (17)

By taking b = V ′, the second order term of ε is eliminated
from equation (17) and we have

∂T R − V ′′R∂XR =
(

1 + 2λ

2
− V ′τ

)

V ′∂2
XR. (18)

In accordance with the stability condition (11) in Sec-
tion 3, traffic flow is stable because the coefficient
((1 + 2λ)/2 − V ′τ) of the second derivative in equa-
tion (18) is positive value. Thus, in the stable region, equa-
tion (18) is just the Burgers equation, of which the solution
is a train of N -shock waves and is given by

R(X, T ) =
1

|V ′′|T
[

X − ηn + ηn+1

2

]

− ηn+1 − ηn

2|V ′′|T
× tanh

[(
1 + 2λ

2
− V ′τ

)
(ηn+1 − ηn)(X − ξn)

4|V ′′|T
]

.

(19)

The coordinates of the shock fronts are given by ξn and
ηn are the coordinates of the intersections of the slopes

with the x-axis (n = 1, 2, ..., N). The triangular shock
waves propagate backward with the propagation velocity
vp which is given by

vp = V ′(h). (20)

The shock waves propagate backwards only with respect
to the moving vehicles, but the shock propagates forward
in the absolute system, if one is in the region of the free
traffic. The propagation velocity decreases with increasing
the headway. According to equation (19), we can observe
that R(X, T ) → 0 when t → ∞, which means that any
density wave in free traffic flow will evolve to a homoge-
neous flow in the course of time. When λ = 0, the results
given in this section agree with the results given in refer-
ence [12].

4.2 KdV equation in the metastable flow region

Next we consider the case of p = 1, q = 3 and m = 2. In
this section we derive the KdV equation near the neutral
stability line which has the soliton solution. From equa-
tion (16), one obtains the following nonlinear partial dif-
ferential equation

ε3(b − V ′)∂XR + ε4

(

b2τ − V ′

2
− λb

)

∂2
XR

+ ε5

[

∂T R +
(

b3τ2

2
− V ′

6
− λb

2

)

∂3
XR − V ′′

2
∂XR2

]

+ ε6

[

(2bτ − λ)∂X∂T R +
(

b4τ3

6
− V ′

24
− λb

6

)

∂4
XR

−V ′′

4
∂2

XR2

]

= 0. (21)

Near the neutral stability line τs = (1 + 2λ)/(2V ′),
τ = (1 − ε2)τs, and taking b = V ′, the third- and fourth-
order terms of ε are eliminated from equation (21). Then
equation (21) can be rewritten as the simplified equation

ε5[∂T R − f1∂
3
XR − f2R∂XR]

+ ε6[−f3∂
2
XR + f4∂

4
XR + f5∂

2
XR2] = 0, (22)

where

f1 =
1 − 12λ2

24
V ′, f2 = V ′′, f3 =

1 + 2λ

2
V ′,

f4 =
1 − 12λ2 − 16λ3

48
V ′, f5 =

1 + 2λ

4
V ′′.

In order to derive the standard KdV equation with higher
order correction, we make the following transformations
for equation (22)

T =
√

f1T
′, X = −

√

f1X
′, R =

1
f2

R′. (23)
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By using of equation (23), we obtain the standard KdV
equation with higher order correction term

∂T ′R′ + ∂3
X′R′ + R′∂X′R′

+
ε√
f1

[

−f3∂
2
X′R′ +

f4

f1
∂4

X′R′ +
f5

f2
∂2

X′R′2
]

= 0.

(24)

If we ignore the O(ε) correction term in equation (24), it
is just the KdV equation with the soliton solution

R′
0(X

′, T ′) = Asech2

[√

A

12

(

X ′ − A

3
T ′

)]

. (25)

Amplitude A of the soliton solution is a free parameter.
The perturbation term in equation (24) gives the condition
of selecting a unique member from the continuous family
of KdV solitons.

Assuming that R′(X ′, T ′) = R′
0(X

′, T ′)+ εR′
1(X

′, T ′),
we take into account the O(ε) correction term. In order
to determine the selected value of A for the soliton solu-
tion (25), it is necessary to satisfy the solvability condition

(R′
0, M [R′

0]) ≡
∫ +∞

−∞
dX ′R′

0M [R′
0] = 0, (26)

where M [R′
0] is the O(ε) term in equation (24). By per-

forming the integration, we obtain the selected value of
amplitude A for the soliton solution as follows

A =
21f1f2f3

24f1f5 − 5f2f4
=

21(12λ2 − 1)
104λ2 − 10λ − 7

V ′. (27)

By rewriting each variable to the original one, we obtain
the soliton solution of the headway as the desired solution

∆xn(t) = h+
A

f2

∣
∣
∣
∣
1 − τ

τs

∣
∣
∣
∣
sech2

{√

A

12f1

∣
∣
∣
∣
1 − τ

τs

∣
∣
∣
∣

×
(

n + V ′t +
A

3

∣
∣
∣
∣
1 − τ

τs

∣
∣
∣
∣
t

)}

. (28)

Thus, the soliton density wave described by the KdV
equation is obtained near the neutral stability line. When
λ = 0, then A = 3V ′. The results given in this section
agree with the results given in reference [13].

4.3 mKdV equation in the unstable flow region

We derive the mKdV equation near the critical point, that
is, the turning point (infection point) with V ′′(hc) = 0.
The critical point will help us to obtain the mKdV equa-
tion which has the kink-antikink solution to describe the
traffic jams.

By taking p = 1, q = 3 and m = 1, we obtain the fol-
lowing nonlinear partial differential equation from equa-

tion (16)

ε2(b − V ′)∂XR + ε3

(

b2τ − V ′

2
− bλ

)

∂2
XR

+ ε4

[

∂T R +
(

b3τ2

2
− V ′

6
− λb

2

)

∂3
XR − V ′′′

6
∂XR3

]

+ ε5

[

(2bτ − λ)∂X∂T R +
(

b4τ3

6
− V ′

24
− λb

6

)

∂4
XR

−V ′′′

12
∂2

XR3

]

= 0, (29)

where V ′ = dV (∆x)
d∆x |∆x=hc and V ′′′ = d3V (∆x)

d∆x3 |∆x=hc . Near
the critical point (hc, 1/λc), τ = (1+ε2)τc, and taking b =
V ′, the second- and third-order terms of ε are eliminated
from equation (29). Then equation (29) can be rewritten
as the simplified equation

ε4[∂T R − g1∂
3
XR + g2∂XR3]

+ ε5[g3∂
2
XR + g4∂

4
XR + g5∂

2
XR3] = 0, (30)

where

g1 =
1 − 12λ2

24
V ′, g2 = −V ′′′

6
, g3 =

1 + 2λ

2
V ′,

g4 =
1 − 12λ2 − 16λ3

48
V ′, g5 =

1 + 2λ

12
V ′′′.

In order to derive the standard mKdV equation with
higher order correction, we make the following transfor-
mations for equation (30)

T =
1
g1

T ′, R =
√

g1

g2
R′. (31)

Then we obtain the standard mKdV equation with higher
order correction term

∂T ′R′ − ∂3
XR′ + ∂XR′3

+
ε

g1

[

g3∂
2
XR′ + g4∂

4
XR′ +

g1g5

g2
∂2

XR′3
]

= 0. (32)

If we ignore the O(ε) correction term in equation (32), it
is just the mKdV equation with the kink-antikink solution

R′
0(X, T ′) =

√
Btanh

[√

B

2
(X − BT ′)

]

. (33)

Similar to the process of deriving the amplitude A for
KdV equation in Section 4.2, we get the selected value of
propagation velocity B for the kink-antikink solution as
follows

B =
5g2g3

2g2g4 − 3g1g5
=

120
5 − 4λ − 52λ2

. (34)

By rewriting each variable to the original one, we obtain
the kink-antikink solution of the mKdV equation

R(X, T ) =

√

g1B

g2
tanh

[√

B

2
(X − Bg1T )

]

. (35)
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Because we adopt the explicit form equation (5) for the
optimal velocity function, V ′ = vmax/2 and V ′′′ = −vmax.
Then the amplitude C of the kink-antikink solution is
given by

C =

√

g1B

g2

∣
∣
∣
∣

τ

τc
− 1

∣
∣
∣
∣
.

The kink-antikink density wave, solution of the mKdV
equation, helps us obtain the coexisting curve in the phase
diagram (see Fig. 1). The coexisting phase of traffic flow
consists of the freely moving phase at low density and the
jammed phase at high density. The headway of the freely
moving phase and the jammed phase are given, respec-
tively, by ∆x = hc + C and ∆x = hc − C. Thus, we can
obtain the coexisting curve in the (∆x, 1/τ) plane.

We also obtain the kink-antikink solution of the head-
way as the desired solution

∆xn(t) = hc+

√

g1B

g2

∣
∣
∣
∣

τ

τc
− 1

∣
∣
∣
∣
tanh

{√

B

2

∣
∣
∣
∣

τ

τc
− 1

∣
∣
∣
∣

×
(

n + V ′t − Bg1

∣
∣
∣
∣

τ

τc
− 1

∣
∣
∣
∣
t

)}

. (36)

Thus, the mKdV equation is derived near the critical point
and its kink-antikink solution appears as density wave in
the unstable region. When λ = 0, then B = 24. The re-
sults given in this section agree with the results given in
reference [13].

From Section 4.1, we obtain that the density wave
is described by the Burgers equation in the evolution of
traffic flow from initial nonuniform to uniform distribu-
tion. With increasing density of traffic flow, the density
wave, respectively, is described by the KdV equation and
mKdV equation in the metastable region and unstable re-
gion from Sections 4.2 and 4.3. Near the critical point, the
disturbance leads to traffic jams which is described by the
kink-antikink density wave.

From above analysis for equation (4), the Burgers
equation in the stable region, KdV equation in the
metastable region and mKdV equation in the unstable re-
gion are derived respectively. It has been shown that only
near the neutral stability line, does the soliton density
wave appear. The soliton wave is the solution of the KdV
equation. Only near the critical point, the kink-antikink
density wave, which is the solution of the mKdV equation,
is derived to describe the traffic jams.

5 Summary

We investigate an extended car-following model by con-
sidering the relative velocity. The stability condition and
density waves of the extended model are obtained by us-
ing the linear stability theory and nonlinear analysis. It
is shown that the stability of traffic flow is improved by
considering the relative velocity. In addition, the density
waves for the extended model are investigated by using
the perturbation method in the stable, metastable and
unstable regions of traffic flow. We obtain that nonuni-
form density profile evolves to the uniform density profile
in the stable flow region by the triangular shock wave,
which can be described by the Burgers equation. We also
find that the density wave is respectively described by the
KdV equation and mKdV equation in the metastable re-
gion and unstable region with increasing density of traffic
flow. In this paper, it is shown that three different den-
sity waves, the triangular shock wave, soliton wave and
kink-antikink wave, appear in the stable, metastable and
unstable regions of traffic flow respectively. The three dif-
ferent density waves are described by the nonlinear wave
equations: the Burgers equation, the KdV equation and
the mKdV equation, respectively.
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